



# High-quality lube oil and fuel components for increased engine performance

Quality lube oil and fuel are paramount to the performance, smooth running and durability of engines. To reach the level of quality necessary to fulfill the most demanding engine requirements, all the components that make lube oil and fuel blends must possess the best performance attributes and come from a renowned, reliable source. Formulators can count on our commitment to produce consistent high-quality products and to bring the most efficient production capacity to the marketplace, thus ensuring long-term, reliable supply across many industries:







Marine



**Aviation** 



Industrial

#### Overview of our main products and brands

High-performance base stocks

O Americas CORE™

Americas SN

o EHC™

Synthetic base stocks

o SpectraSyn Elite™

o SpectraSyn™

o SpectraSyn Plus™

o Synesstic<sup>™</sup>

o Esterex<sup>™</sup>

Synthetic intermediates\*

o u65 and u150 grades

Fluids

o Solvesso™

o Exxsol™

o Isopar™

o ExxonMobil™ SBA

Higher olefins

o ExxonMobil™ Heptene

o ExxonMobil™ Nonene

o ExxonMobil<sup>™</sup> Tetramer

**Alcohols** 

o Exxal<sup>™</sup> 8

o Exxal<sup>™</sup> 10

o Exxal<sup>™</sup> 13

Neo acids

o ExxonMobil™ neopentanoic acid

o ExxonMobil™ neodecanoic acid

\*Additional grades currently being scoped. Please contact your sales representative for additional information.



# Highperformance base stocks

# Our base stocks provide broad formulation coverage for a wide range of lube applications

As one of the world's largest manufacturers of base stocks, we offer a range of consistent, intelligently designed global slates that enable a single approval for each global formulation and create off-the-shelf, OEM-approved products. By continuously investing in innovative products, optimizing blend plants and simplifying logistics, we propose reliable supply solutions and show our commitment to providing a broad range of base stocks for lubricant innovators today and in the future.

Our portfolio comprises robust Group I CORE™ and Group II/II+ EHC™ base stock slates, thus providing a broad range of base stocks with compatible characteristics.

#### Key features and benefits

- Offer broad blending coverage for applications ranging from engine oils to industrial lubricants
- Technical specifications that enable supply chain flexibility and simplified qualification testing requirements
- Can be blended to meet the requirements of the most popular lubricants, providing increased flexibility and reduced need for Group III

#### Selection of ExxonMobil base stocks: Sales specifications

|   | Property                               | Limit       | Standard<br>method | Americas<br>CORE <sup>™</sup> 100 | Americas<br>CORE <sup></sup> 150 | Americas<br>CORE <sup>™</sup> 600 | Americas<br>CORE <sup></sup> 2500 | EHC <sup>~</sup> 45 | EHC <sup>~</sup> 65 | EHC~ 120*         |
|---|----------------------------------------|-------------|--------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|---------------------|---------------------|-------------------|
|   | Appearance                             |             | Visual             | Clear &<br>Bright                 | Clear &<br>Bright                | Clear &<br>Bright                 | Clear &<br>Bright                 | Clear &<br>Bright   | Clear &<br>Bright   | Clear &<br>Bright |
| ı | ASTM Color                             | Max         | ASTM D1500         | 1.5                               | 1.5                              | 4                                 | 6                                 | L0.5                | L0.5                | 0.5               |
|   | CCS Viscosity -25°C<br>mPa•sec         | Max         | ASTM D5293         | 1650                              |                                  |                                   |                                   | 1550                |                     |                   |
|   | CCS Viscosity<br>-20°C mPa•sec         | Max         | ASTM D5293         |                                   | 2100                             |                                   |                                   |                     | 3100                |                   |
|   | Flash Point,<br>COC Deg C              | Min         | ASTM D92           | 194                               | 210                              | 246                               | 294                               | 204                 | 214                 | 255               |
|   | Kinematic Viscosity<br>@ 40°C mm2/sec  | Min-<br>Max | ASTM D445          | 18.5-21.0                         | 29.0-32.0                        | 109.0-116.0                       |                                   |                     |                     | 96-108            |
|   | Kinematic Viscosity<br>@ 100°C mm2/sec | Min-<br>Max | ASTM D445          |                                   |                                  |                                   | 30.6-32.7                         | 4.4-4.7             | 6.3-6.6             | 11.7-12.5         |
|   | NOACK Volatility, wt%                  | Max         | PROCEDURE B        | 30                                | 20                               |                                   |                                   | 15                  | 10                  |                   |
|   | Pour Point Deg C                       | Max         | ASTM D97           | -18                               | -15                              | -6                                | -6                                | -18                 | -18                 | -15               |
|   | Viscosity Index                        | Min         | ASTM D2270         | 95                                | 95                               | 95                                | 95                                |                     |                     |                   |
|   |                                        | Min-<br>Max | ASTM D2270         |                                   |                                  |                                   |                                   | 113-119             | 103-109             | 102-115           |

#### Source: ExxonMobil data.

In lieu of standard test method, alternate test methods may be used for the certification of a product property. Note 1: Products are certified on release to meet the values specified. Actual values may deviate within the established reproducibility of the test method specified.

For the purpose of determining conformance with specification, observed or calculated values shall be rounded off to the nearest unit in the last significant digit used in expressing the limiting value in accordance with the ASTM E29 method.

For information on availability of the products and testing methods, please contact ExxonMobil at <a href="https://www.exxonmobil.com/en/basestocks/where-to-buy">https://www.exxonmobil.com/en/basestocks/where-to-buy</a>.



# Synthetic base stocks and chemical intermediates

### Trust our 50 years' experience in advanced synthetic base stocks for innovative lubricants

Developing innovative and commercially successful lubricants requires commitment to supply reliability, global product integrity and deep insights into the lubricant market and applications.

Our synthetic base stocks represents one of the broadest portfolios in the industry and enable the formulation of high-quality lubricants to help you meet today's energy efficiency, emission reduction and fuel economy challenges. They are ideally suited not only for automotive and marine lubricants and fluids, but also for industrial lubricants and greases, fiber optic cable, as well as food-grade processing lubricants and greases.

#### Key features and benefits Group IV

- SpectraSyn<sup>™</sup> PAO Available in a full range of viscosities, meeting the requirements of synthetic and synthetic blend lubricants.
- o SpectraSyn™ MaX PAO Through unprecedented balance of low viscosity and low volatility, groundbreaking SpectraSyn MaX PAO is designed to help deliver enhanced fuel economy and energy efficiency without sacrificing durability and wear protection.
- SpectraSyn Plus™ PAO Offering lower volatility and improved low-temperature fluidity vs. conventional PAO, helping to meet the challenges of extended drain intervals and improved energy efficiency.

#### Selection of ExxonMobil synthetic base stocks: Typical properties

| Product type | Product name                     | Product description                                | SG @ 15.6°C | KV @ 100°C cST | KV @ 40°C cST | KV @ -40°C cST | VI  | Pour point, ° | Flash point COC, |
|--------------|----------------------------------|----------------------------------------------------|-------------|----------------|---------------|----------------|-----|---------------|------------------|
| PAO          | SpectraSyn* 2                    | Low viscosity PAO                                  | 0.798       | 1.7            | 5.0           | 252            | n/a | -66           | 157              |
|              | SpectraSyn~ 2B                   |                                                    | 0.799       | 1.8            | 5.0           | n/a            | n/a | -54           | 149              |
|              | SpectraSyn~ 2C                   |                                                    | 0.798       | 2.0            | 6.4           | n/a            | n/a | -57           | >150             |
|              | SpectraSyn~ 4                    |                                                    | 0.820       | 4.1            | 19            | 2,900          | 126 | -66           | 220              |
|              | SpectraSyn <sup>™</sup> 5        |                                                    | 0.824       | 5.1            | 25            | 4,920          | 138 | -57           | 240              |
|              | SpectraSyn™ 6                    |                                                    | 0.827       | 5.8            | 31            | 7,800          | 138 | -57           | 246              |
|              | SpectraSyn 8                     |                                                    | 0.833       | 8.0            | 48            | 19,000         | 139 | -48           | 260              |
|              | SpectraSyn~ 10                   |                                                    | 0.835       | 10             | 66            | 39,000         | 137 | -48           | 266              |
|              | SpectraSyn~ 40                   | High viscosity PAO                                 | 0.850       | 39             | 396           | n/a            | 147 | -36           | 281              |
|              | SpectraSyn~ 100                  |                                                    | 0.853       | 100            | 1,240         | n/a            | 170 | -30           | 283              |
|              | SpectraSyn MaX 3.5               |                                                    | n/a         | 3.51           | 14.26         | n/a            | 128 | -78           | 234              |
|              | SpectraSyn Plus™ 3.6             | Low viscosity PAO with improved volatility and CCS | 0.816       | 3.6            | 15.4          | 2,000          | 120 | <-65          | 224              |
|              | SpectraSyn Plus™ 4               |                                                    | 0.820       | 3.9            | 17.2          | 2,430          | 126 | <-60          | 228              |
|              | SpectraSyn Plus™ 6               |                                                    | 0.827       | 5.9            | 30.3          | 7,400          | 141 | <-54          | 246              |
| mPAO         | SpectraSyn Elite <sup>™</sup> 65 | High viscosity,                                    | 0.846       | 65             | 614           | n/a            | 179 | -42           | 277              |
|              | SpectraSyn Elite™ 150            | high VI. mPAO                                      | 0.849       | 156            | 1,705         | n/a            | 206 | -33           | 282              |
|              | SpectraSyn Elite* 300            |                                                    | 0.849       | 303            | 3,358         | n/a            | 241 | -33           | 286              |
|              | Synesstic <sup>™</sup> 5         | Alkylated naphthalene                              | 0.908       | 4.7            | 29.0          | n/a            | 74  | -39           | 222              |
|              | Synesstic <sup>™</sup> 12        |                                                    | 0.887       | 12.4           | 109           | n/a            | 105 | -36           | 258              |
| Esters       | Esterex <sup>™</sup> A32         | Adipate esters                                     | 0.928       | 2.8            | 9.5           | 985            | 149 | -65           | 207              |
|              | Esterex <sup>~</sup> A34         |                                                    | 0.922       | 3.2            | 12            | 1,970          | 137 | -60           | 199              |
|              | Esterex <sup>™</sup> A41         |                                                    | 0.921       | 3.6            | 14            | 3,286          | 144 | -57           | 231              |
|              | Esterex <sup>~</sup> A51         |                                                    | 0.915       | 5.4            | 27            | 16,970         | 136 | -57           | 247              |
|              | Esterex™ P61                     | Phthalate esters                                   | 0.967       | 5.4            | 38            | n/a            | 62  | -42           | 224              |
|              | Esterex™ P81                     |                                                    | 0.955       | 8.3            | 84            | n/a            | 52  | -33           | 265              |
|              | Esterex <sup>™</sup> TM111       | Trimellitate esters                                | 0.978       | 11.9           | 124           | n/a            | 81  | -33           | 274              |
|              | Esterex™ NP343                   | Polyol esters                                      | 0.945       | 4.3            | 19            | 2,540          | 136 | -48           | 257              |
|              | Esterex <sup>™</sup> NP451       |                                                    | 0.993       | 5.0            | 25            | 7,610          | 130 | -60           | 255              |

Source: ExxonMobil data.

o SpectraSyn Elite<sup>™</sup> mPAO – Offering improved shear stability, higher VI, and improved low temperature fluidity to enable better blending efficiency and performance capabilities vs. conventional PAO.





#### **Group V**

- o Synesstic™ Alkylated Naphthalenes (AN) Providing additive solvency and seal compatibility, with exceptional hydrolytic, thermal and oxidative stability.
- Esterex<sup>™</sup> Esters Providing additive solvency, seal compatibility and varying degrees of biodegradability to enhance lubricant capablity.

#### **Group IV Intermediates**

 uPAO: Unhydrogenated PAOs with high vinylidene content, providing Adcos with new options for functionalization into performance-enhancing additives.

# Selection of ExxonMobil synthetic intermediates: Typical properties U65 U150

| Basics                             | Typical Value (English) | Test Based On    |
|------------------------------------|-------------------------|------------------|
| Specific Gravity (60.1°F (15.6°C)) | 0.840                   | ASTM D4052       |
| Appearance                         | Bright & Clear          | Visual           |
| Color                              | <0.5                    | ASTM D1500/D6045 |
| Kinematic Viscosity (104°F (40°C)) | 520 cSt                 | ASTM D445        |
| Flash Point, COC                   | 531 °F                  | ASTM D92         |
| Bromine Number                     | 8.9 g Br/100 g          | AS-M 1377        |
| Water                              | 15 ppm                  | ASTM D6304       |
| Total Acid Number                  | <0.10 mg KOH/g          | ASTM D974        |

| Basics                             | Typical Value (English) | Test Based On    |
|------------------------------------|-------------------------|------------------|
| Specific Gravity (60.1°F (15.6°C)) | 0.840                   | ASTM D4052       |
| Appearance                         | Bright & Clear          | Visual           |
| Color                              | <0.5                    | ASTM D1500/D6045 |
| Kinematic Viscosity (104°F (40°C)) | 160cSt                  | ASTM D445        |
| Flash Point, COC                   | 536 °F                  | ASTM D92         |
| Bromine Number                     | 4.6 g Br/100 g          | AS-M 1377        |
| Water                              | < 15 ppm                | ASTM D6304       |
| Total Acid Number                  | <0.10 mg KOH/g          | ASTM D974        |

Source: ExxonMobil data.





#### Lubricant additive

We recognize the importance of having a lubricant additive which not only protects the base oil, but also improves performance and protects the lubricated surface. ExxonMobil's SBA is made with consistent quality to allow for optimal performance in the formulation.

#### **Fuel additive**

Whether you are treating fuels within a refinery or a personal vehicle, ExxonMobil's Hydrocarbon Fluids offer a solution to your fuel additive needs.

As one of the largest global refiners, we understand the importance of additives such as antioxidants and corrosion inhibitors. We offer a variety of narrow boiling-range Solvesso<sup>TM</sup> Fluids as effective solvents to address your formulation needs.

#### Key features and benefits

- o > 99% aromatic content for optimal solvency.
- o Low pour points to improve flow at lower temperatures.
- Low viscosity @ 25°C allows for easy blending.

When it comes to preventing the formation of deposits in areas such as the fuel injectors or octane boosters, we offer a range of Exxsol Dearomatized and Isopar Fluids as carriers for your active ingredient(s).

- o < 1% aromatic content allows for low odor in the finished product.
- o Narrow distillation ranges.

#### Selection of hydrocarbon and oxygenated fluids: Typical properties\*

| HYDROCARBON FLUIDS          | Distillation         | n range ° | Flash point | Density at<br>15°C kg/m3  | Evaporation rate at 25°C                  | Vapor pressure<br>20°Cmm Hq | Aniline point        | Kinematic viscosity<br>at 25°CcST | Aromatic content vo%:wt% |
|-----------------------------|----------------------|-----------|-------------|---------------------------|-------------------------------------------|-----------------------------|----------------------|-----------------------------------|--------------------------|
|                             | IBP                  | DP        |             | g                         | n-BuAc=100                                |                             |                      |                                   |                          |
| AROMATICS                   |                      |           |             |                           |                                           |                             |                      |                                   |                          |
| Solvesso 100                | 166                  | 181       | 50          | 877                       | 18                                        | 0.2                         | 14^                  | 100                               | >99                      |
| Solvesso <sup>™</sup> 150   | 180                  | 206       | 66          | 896                       | 7.7                                       | 0.08                        | 15^                  | 1.27                              | >99                      |
| Solvesso* 200               | 231                  | 280       | 105         | 885                       | 0.4                                       | 0.003                       | 13^                  | 2.74                              | >99                      |
| DEAROMATIZED FLUIDS         |                      |           |             |                           |                                           |                             |                      |                                   |                          |
| Exxsol <sup>™</sup> D40     | 160                  | 203       | 44          | 777                       | 16                                        | 1.3                         | 67                   | 1.34                              | 0.015                    |
| Exxsol <sup>~</sup> D60     | 190                  | 214       | 65          | 793                       | 3.5                                       | 0.3                         | 70                   | 1.77                              | 0.01                     |
| Exxsol* D80                 | 207                  | 240       | 83          | 807                       | 1.2                                       | 0.09                        | 72                   | 2.28                              | 0.002                    |
| Exxsol* D95**               |                      |           |             |                           |                                           |                             |                      |                                   |                          |
| ISOPARAFFINS                |                      |           |             |                           |                                           |                             |                      |                                   |                          |
| Isopar™ C                   | 98                   | 104       | -7          | 699                       | 380                                       | 34                          | 78                   | 0.69                              | 0.001                    |
| Isopar™ E                   | 115                  | 139       | 5           | 723                       | 170                                       | 15                          | 73                   | 0.82                              | 0.001                    |
| Isopar™ H                   | 178                  | 189       | 53          | 759                       | 6.9                                       | 0.6                         | 80                   | 1.8                               | 0.001                    |
| Isopar™ L                   | 190                  | 207       | 63          | 767                       | 3.6                                       | 0.3                         | 82                   | 2.11                              | 0.002                    |
| Isopar™ M                   | 227                  | 254       | 97          | 782                       | 0.3                                       | 0.02                        | 86                   | 4.23                              | 0.004                    |
|                             | Distillation range ° |           | Flash point | Density at<br>20°C lb/gal | Evaporation<br>rate at 25°C<br>n-BuAc=100 | Vapor pressure<br>20°Cmm Hg | Aniline point mixed^ | Kinematic viscosity<br>at 25°CcST | Aromatic content vo%:wt% |
|                             | IBP                  | DP        |             |                           | n Barc-100                                |                             |                      |                                   |                          |
| OXYGENATED FLUIDS           |                      |           |             |                           |                                           |                             |                      |                                   |                          |
| ExxonMobil <sup>®</sup> SBA | 99.5                 | 100.1     | 23          | 805                       | 160                                       | -                           | -                    | 3.79                              | -                        |

<sup>\*</sup>Source: Fluids at a glance EMEA portfolio: exxonmobilchemical.com/emea-portfolio For other regions, please refer to

<sup>\*\*</sup>Fluids at a glance - Asia Pacific portfolio: exxonmobilchemical.com/ap-portfolio



<sup>\*\*</sup>Fluids at a glance — Americas portfolio: exxonmobilchemical.com/americas-portfolio

# Higher olefins

Building blocks in a vast array of derivatives used in lube oil and fuel additives and other industrial applications

ExxonMobil is the largest producer of higher olefins. The majority of our production is used as feedstocks to produce our own branched alcohols and neo acids. With our global manufacturing capability, customers can rely on our consistent and reliable supply around the world.

# Provide flexibility to address a wide number of applications

Higher olefins are reactive intermediates used to manufacture products used in lube oil additives, and are also used for surfactants, agricultural chemicals, coatings and corrosion inhibitors.

ExxonMobil markets a whole range of higher olefins that address different applications.

#### Key features and benefits

- Versatile feedstocks for a number of applications
- Benefits of the branched structures such as liquidity and solubility
- Allow selection of appropriate viscosity, volatility and solubility of the final derivative

#### Selection of higher olefins: Typical properties, Sales specifications

|                                        | Peroxides, active oxygen max ppm             | Color, Pt-Co max                             | Saturates max<br>Wt/vl%/wt%^    | Specific gravity min<br>@20/20°C                    | Specific gravity max<br>@20/20°C                    | Sulfur max<br>wppm                           | Water content<br>Wt%/wppm^             |
|----------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------|
| ExxonMobil <sup>™</sup><br>Heptene     | 10<br>ASTM D3703/<br>BRCP 4615               | 40<br>BRCP 4273/<br>ISO 6271-2               | 4.0 ^<br>BCI GC-0/<br>BRCP 4790 | 0.705<br>BRCP 4843/<br>CALCULATED                   | 0.716<br>BRCP 4843/<br>CALCULATED                   | 50<br>BRCP 7731/<br>WTM 90                   |                                        |
| ExxonMobil <sup>™</sup><br>Nonene      | 10<br>AMS 300.10/<br>BRCP 4615/<br>ECIM 3006 | 15<br>BRCP 4273/<br>ECIM 1003/<br>ASTM D5386 | 1.0<br>BRCP 4790/<br>ECIM 2011  | 0.738<br>ASTM D402(mod)/<br>BRCP 4843/<br>ECIM 1009 | 0.743<br>ASTM D402(mod)/<br>BRCP 4843/<br>ECIM 1009 | 10<br>ASTM D5453/<br>BRCP 7731/<br>ECIM 7731 |                                        |
| ExxonMobil <sup>™</sup><br>Nonene LSAT | 10<br>BRCP 4615                              | BRCP 4273                                    | 0.60<br>BRCP 48790              | 0.738<br>BRCP 4843                                  | 0.743<br>BRCP 4843                                  | 10<br>BRCP 7731                              | 150<br>BRCP 5053                       |
| ExxonMobil <sup>™</sup><br>Tetramer M  | 10<br>AMS 300.10/<br>ECIM 3006               | 15<br>ECIM 1003/<br>ASTM D5386               |                                 | 0.767<br>ASTM D4052(mod)/<br>ECIM 1009              | 0.778<br>ASTM D4052(mod)/<br>ECIM 1009              | 10<br>ASTM D5453/<br>ECIM 2033               | 150 ^<br>ASTM E1064<br>(mod)/ECIM 3003 |

Source: ExxonMobil data.



# Alcohols

Building blocks in a vast array of derivatives used in lube oil and fuel additives and other industrial applications.

Customers around the world can rely on our Exxal\* alcohols to synthesize derivatives used in different industrial applications. We are committed to meeting your needs through our global manufacturing and supply capabilities.

## Offer many performance advantages thanks to their branched structure

Exxal™ alcohols are isomeric branched, primary alcohols that contain both even- and odd-numbered hydrocarbon chains, ranging from C8 to C13. Our customers use Exxal alcohols to synthesize derivatives used in lube and fuel additives in the automotive industry as well as other industrial applications such as surfactants, polymer additives, adhesives and lubricant esters.

#### Key features and benefits

- Provide solubility in lubes
- Provide the required decomposition ranges for antiwear ZDDP
- Used in the production of VI improvers and pour point depressants
- Used in the production of anti-oxidants and detergents-dispersants for lubes

# Selection of alcohols: Typical properties for globally available Exxal™ alcohols

| Alcohol<br>Chemical<br>name            | <b>Acid value</b><br>mg KOH/g | <b>Boiling range</b><br>°C ASTM D1078 | Carbonyl number<br>mg KOH/g | Color<br>Pt-Co<br>ASTM D5386 | Density at<br>20°C g/cm3<br>ASTM D4052 | Flash point<br>PMCC °C | <b>Hydroxyl number</b><br>mg KOH/g | Purity Wt%<br>Total alcohol | Viscosity @20°C<br>mm2/s<br>ASTM D455 | Water content<br>wt%<br>ISO 12937 |
|----------------------------------------|-------------------------------|---------------------------------------|-----------------------------|------------------------------|----------------------------------------|------------------------|------------------------------------|-----------------------------|---------------------------------------|-----------------------------------|
|                                        | ASTM D1045                    |                                       | ISO 1843-3/<br>ASTM E411    |                              |                                        | ASTM D93               | ISO 1843-5                         | ROP 103/<br>BRCP 5287       |                                       |                                   |
| Exxal <sup>™</sup> 8<br>Isooctanol     | <0.03                         | 187-193                               | <0.15                       | 5                            | 0.831                                  | >70                    | 424                                | >99                         | 13                                    | <0.1                              |
| Exxal <sup>™</sup> 10<br>Isodecanol    | <0.05                         | 217-224                               | <0.2                        | 5                            | 0.837                                  | >90                    | 350                                | >99                         | 21                                    | <0.1                              |
| Exxal <sup>~</sup> 13<br>Isotridecanol | <0.03                         | 255-262                               | <0.2                        | 5                            | 0.845                                  | >100                   | 284                                | >98.5                       | 48                                    | <0.1                              |

Analytical methods depend on production site. Other equivalent methods can be used. See specification sheets for complete information. Source: ExxonMobil data.





#### Superior building blocks for chemical derivatives

ExxonMobil™ neo acids are aliphatic carboxylic acids produced via carbonylation of the higher olefins. They are used to produce chemical derivatives such as corrosion inhibitors and esters with high hydrolytic stability. Their highly branched structure offers very specific properties to the products and their derivatives.

#### Key features and benefits

- Very high thermal and hydrolytic stability of derivatives as esters
- O Used as corrosion inhibitors in antifreeze coolants
- Easy transportation, storage and handling due to low pour point

#### Selection of neo acids: Typical properties

| <b>Alcohol</b><br>Chemical name                      | <b>Acid value</b><br>mg KOH/g<br>ASTM D1980 | Boiling<br>range<br>°C<br>ASTM<br>D1078 | Color<br>Pt-Co<br>ASTM<br>D5386 | Density<br>at 20°C<br>g/cm3<br>ASTM<br>D4052 | Flash<br>point<br>PMCC °C<br>ASTM<br>D93 | Pour<br>point<br>°C ASTM<br>D5950 | Purity<br>Wt%<br>(single<br>isomer)<br>BRCP 4523 | Viscosity<br>mm2/s<br>ASTM D455 | Water<br>content<br>wt%<br>ASTM<br>E1064 |
|------------------------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------------|---------------------------------|------------------------------------------|
| Neopentanoic acid<br>2,2. Dimethyl<br>propionic acid | 550                                         | 160-162                                 | White<br>solid<br>at RT         | 0.905 at<br>40°C                             | >60                                      | 36                                | >99.7                                            | 1.7<br>at 60° C                 | <0.1                                     |
| Neodecanoic acid<br>Neodecanoic acid                 | 324                                         | 250-262                                 | 7                               | 0.911 at<br>20°C                             | >120                                     | <-40                              |                                                  | 42<br>at 20°C                   | <0.1                                     |

Source: ExxonMobil data.



# Notes





# Notes





# Typical values may vary within modest ranges, and specifications may be subject to change. To the extent permitted by applicable law, all warranties and/or representations, express or implied, as to the accuracy of the information are disclaimed, and no liability is accepted for the accuracy or completeness of the same. this document, the user may do so only if the document is unaltered and complete, including all of its headers, footers, disclaimers **Health and Safet** Detailed health and safety information for our products is provided in the material safety data sheet (MSDS), with any other product or materials. We based the information on data believed to be reliable on the date compiled, but we do not available upon request through your local sales representative or from processes described. The user is solely responsible for all determinations regarding any use of material or product and any process in its territories of interest. We expressly disclaim liability for any loss, damage or injury directly or indirectly suffered or incurred as a result of or related to anyone using or relying on any of the information in this document. This document is not an endorsement Chemical" and "ExxonMobil" are each used for convenience, and may include any one or more of ExxonMobil Chemical Company,

PN# X0721-522E96