

A reliable and cost-effective solution for production of renewable gasoline

Jim Mallon

Market Developer

Catalysts & Licensing Business Unit, ExxonMobil Corporation

Energy lives here

ExonMobil

Agenda

- Market needs
- MTG feedstocks and chemistry
- ExxonMobil MTG development history
- Process overviews:
 MTG fixed bed and MTG fluid bed
- Advantages of fluid bed MTG

CO₂ emissions mitigation

Innovation

Speed of change Evolving regulations

Proven and/or scalable technology

Affordability

Lower system cost

POTENTIAL SOLUTIONS

Transport sector emissions

Technologies that can enable renewable fuels

Advancing the development and use of technologies for lower-emission fuels

ExxonMobil Catalysts & Licensing (C&L)

Renewable (distillate) fuel technologies:

- Bio-Isomerization Dewaxing (**BIDW****) catalysts
- ExxonMobil Renewable Diesel Process (EMRD**)
- Flexibility to tailor the amount of jet fuel vs. diesel

Renewable methanol to gasoline technologies:

Fluid bed Methanol To Gasoline (FL-MTG)

Methanol feedstocks and chemistry

MTG Reactions

Theoretical Chemistry

ExxonMobil MTG development history

Early 1970s

Bench Scale

- ZSM-5 Zeolite catalyst discovered
- ZSM-5 catalyst limits synthesis reactions to gasoline range hydrocarbons

Late 1970s

4 BPD Pilot Unit

Mobil studied
 Fixed Bed and
 Fluid Bed MTG
 options at 4 BPD
 MeOH pilot plant
 scale

Early 1980s

100 BPD Demo Unit

- 100 BPD Fluid Bed MTG Unit was built in Germany
- Considered
 "Technically Ready"

1985 - 2016

Fixed Bed Commercial Scale

New Zealand, 1985-1997

14.5 KBD MTG

JAMG-1, China, S/U 2009

2.5 KBD MTG

JAMG-2, China, 2016,

12.5 KBD X 2

2014 - 2017

Fluid bed Path to Commercialization

- ExxonMobil and SEG Fluid Bed CDA, 2014 -2017
- Considered "Technically Ready"

Process Overview – Fixed Bed MTG

(older design, for reference)

Process Overview - Fluid Bed MTG

(offered by ExxonMobil)

Property of MTG gasoline	Typical values
Octane number, RON	92 – 95
Octane number, MON	82 – 85
Aromatics, vol%	25 – 35
Olefins, vol%	10 – 14
Benzene, vol%	<u><</u> 0.3
Durene, wt%	<u><</u> 2
Sulfur, mg/Kg	<u>≤</u> 10
Final boiling point (FBP), deg C	200 – 210

Significantly simplified process with lower CAPEX

Higher operation reliability with lower Operating Costs

	Fixed bed	Fluid bed	Fluid bed benefit
Operating pressure	~300psi	~70psi	Less energy consumption
Catalyst age monitoring	Requires rigorous programming and operation expertise to manage each reactor's catalyst age / cycle length	Continuously add make-up small amount of catalyst to maintain activity	Easier catalyst management
Gasoline yields & quality control	 Very complicated at managing the variability of product yields & quality by monitoring sequencing / regeneration of each reactor Difficult to maintain the steady state yields & quality 	Stable product quality due to the steady state mode	Easier production process control
Heat integration	Require very large heat exchangers for recycle gas quench due to low gas/gas heat transfer	High pressure steam generation	More efficient quench
Stream factor	~91%	Expected to be similar to FCC unit	Higher availability

Fluid Bed MTG Advantages

Compared to fixed bed MTG, fluid bed MTG demonstrates following advantages:

Lower CAPEX

Single reactor/regenerator
Significant reduction in equipment/piping

Lower
Operating Cost

Less recycle gas
Better heat integration
Lower power
consumption

Higher operation reliability

More efficient quench
Less switching of reactors
Lower operating pressure

Steady state operation mode Catalyst maintained in steady active state

Scalable Methanol to Fuels Conversion Technology

Haru Oni Project in Chile

Positioning for a lower carbon energy future

ExxonMobil is advancing sustainable, effective solutions that address the world's growing demand for energy and the risks of climate change

MTG process technology

EMRD™ process technology

BIDW[™] catalyst solutions

Our approach includes:

PROVIDING PRODUCTS TO HELP CUSTOMERS REDUCE THEIR EMISSIONS

DEVELOPING AND DEPLOYING SCALABLE TECHNOLOGY SOLUTIONS

Thank you!

Follow us

@XOM_chemical

linkedin.com/showcase/exxonmobil-chemical

energyfactor

https://energyfactor.exxonmobil.com/

https://www.exxonmobilchemical.com/en/catalysts-and-technology-licensing

Energy lives here

ExconMobil