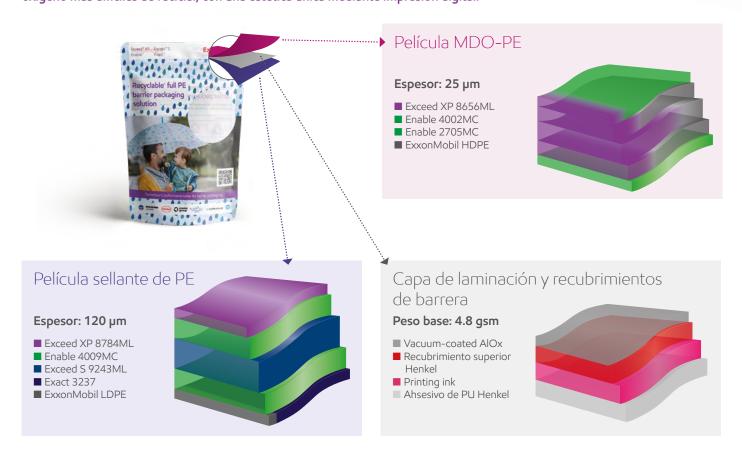
Estudio de caso

Barrera al oxígeno sobresaliente



Integridad de empaque sobresaliente

Reto:

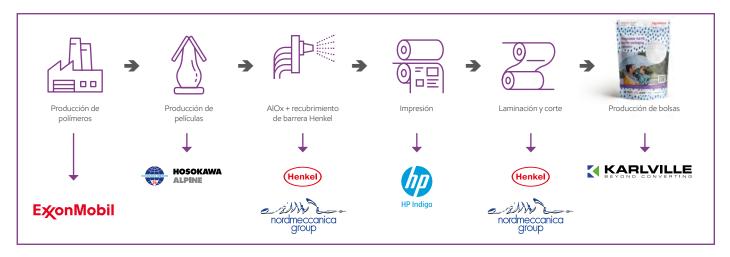
Crear una bolsa de alta barrera al oxígeno con PE >95%, como alternativa a los laminados multi-material de alta barrera al oxígeno más difíciles de reciclar, con una estética única mediante impresión digital.

^{*} Reciclable en comunidades con programas e instalaciones que recolecten y reciclen películas plásticas

Solución:

Mediante la última tecnología en polímeros y conversión, y a través de una colaboración única en la cadena de valor, el equipo pudo crear una bolsa de PE al 97% con alta barrera al oxígeno, características ópticas únicas gracias a la impresión digital HP Indigo y muy buena integridad del empaque.

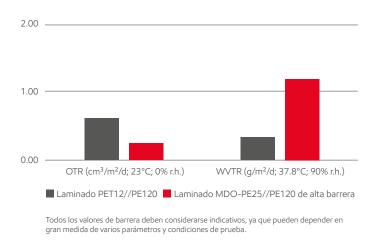
Esta película soplada se produjo con las mejores resinas de polietileno de alto desempeño de ExxonMobil, como Exceed S, Exceed XP y Exact, y se fabricó en una línea Alpine de 5 capas con MDO en línea. Esta tecnología MDO de última generación ofrece una calidad de película con una excelente capacidad de procesamiento y una uniformidad optimizada.


Luego se aplicaron dos capas funcionales extremadamente delgadas sobre el PE MDO para brindar propiedades de barrera excepcionales: la primera capa consistió en 10 nanómetros de AlOx uniforme y homogéneo, y la segunda capa en 1 micra del recientemente desarrollado recubrimiento de barrera de Henkel.

Ambas capas funcionales se aplicaron utilizando las tecnologías de vacío y recubrimiento de Nordmeccanica [Nordmet 12F Plus / Super Combi 5000]. Estas tecnologías ofrecen un desempeño líder en la industria en términos de confiabilidad, distribución uniforme, control de espesor y consumo de energía.

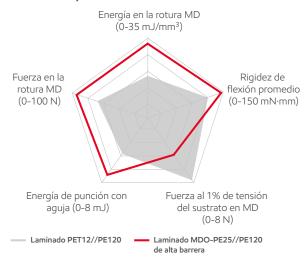
Posteriormente, HP imprimió la película utilizando tecnología de impresión digital en una prensa HP Indigo 25K.

En el siguiente paso, el MDO-PE se laminó con la red de sellado en una máquina de recubrimiento-laminación Nordmeccanica SC 5000 utilizando los adhesivos SL personalizados de Henkel, diseñados para el reciclaje mecánico.


Finalmente, Karlville manufacturó las bolsas con el último modelo de máquina de bolsas KS-DSUP-400.

Propiedades de barrera:

Esta bolsa incorpora el concepto innovador de AlOx y revestimientos de barrera, para producir una bolsa con un contenido de PE muy alto (97%) y, al mismo tiempo, proporcionar una alta OTR (~0,25 cm³/m²/d) y WVTR (~1,2 g/m²/d;), valores comparables con estructuras de baja barrera menos listas para reciclar, como se puede ver en el Gráfico 1.


Gráfico 1 - Barrera al oxígeno y a la humedad*

Propiedades mecánicas:

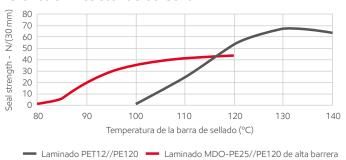
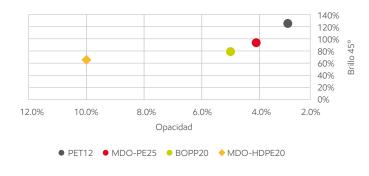

Esta bolsa cuenta con la última resina de PE Exceed S para brindar una integridad de paquete excepcional, lo que resulta en una mejora en la perforación y la fuerza de ruptura del 60% y 70%, respectivamente, en comparación con alternativas comparables, a la vez que mantiene una rigidez comparable para mantener la capacidad de exhibición vertical.

Gráfico 2 - Propiedades mecánicas

Además, la bolsa cuenta con los plastómeros de la serie 3 de Exact para bajar la temperatura de iniciación del sellado.

Gráfico 3 - Resistencia del sello


Esta bolsa también incluye la tecnología de impresión digital HP Indigo, que permite imprimir para que cada bolsa luzca única.

Características ópticas:

El sustrato MDO no compromete el atractivo del empaque, el cual tiene un brillo excepcional (~93%) y baja opacidad (~4%), rivalizando con el mejor sustrato PET posible, como se puede ver en el Gráfico 4.

Gráfico 4 - Propiedades ópticas

Elemento de prueba	Método de prueba
Tasa de transmisión de oxígeno (OTR)	Método de prueba ExxonMobil
Velocidad de transmisión de vapor de agua (WVTR)	Método de prueba ExxonMobil
Propiedades de tracción sobre la película a temperatura ambiente	Método de prueba ExxonMobil
Punción - prueba con aguja	Método de prueba ExxonMobil
Resistencia al termosellado a temperatura ambiente	Método de prueba ExxonMobil
Rigidez de flexión	Método de prueba ExxonMobil
Opacidad	basado en ASTM D-1003-13
Brillo 45°	Método de prueba ExxonMobil

