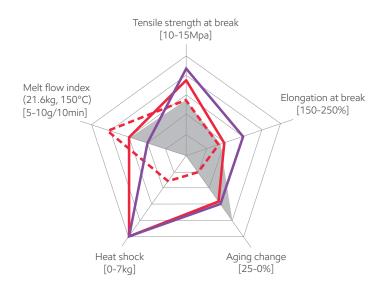


Performance PE polymers for optimized halogenfree flame retardant wire & cable compounds

Legislation and increasing safety and environmental awareness are driving significant growth in demand for halogenfree flame retardant (HFFR) compounds for wire & cable applications. As a result, the industry is looking to improve the flame retardation, mechanical performance and processability of HFFR compounds. With ExxonMobil's broad portfolio of performance PE polymers, HFFR compounders now have the opportunity to optimize performance across these requirements.

Exploring solutions using ExxonMobil performance polymers


HFFR compound solutions provide improved mechanical properties

- Exceed[™] 3518-based solution offers outstanding heat shock and improved tensile strength
- Exceed 3518 combined with Exceed 0015-based solution delivers improved extrudability while maintaining heat shock and tensile properties
- Exceed[™] XP 6056-based solution offers enhanced cable integrity for demanding applications, such as improved tensile and elongation compared to Exceed 3518

Exceed XP performance PE demonstrates outstanding mechanical strength in high filler loading solution

When targeting increased flame retardation:

- Exceed XP 8656 provides excellent heat shock performance
- Exceed XP 6056 provides better mechanical properties
- With Exceed 0015, our HFFR compound solution delivers improved extrudability while maintaining heat shock and tensile properties

	ExxonMobil™ LLDPE LL1002	Exceed 3518	Exceed 3518 with Exceed 0015	Exceed XP 6056
Aluminum hydroxide (4m²/gr)	150phr	150phr	150phr	150phr

Aging (110°C, 10 d): higher change percentage chosen out of either tensile strength or elongation

Data from tests performed by or on-behalf of ExxonMobil

	Tensile strength at br	eak	
	[10-15Mpa]		
Melt flow index (21.6kg, 150°C) [4-8g/10min]			ilongation at break [150-180%]
Heat sho [0-7kg		Aging change [30-0%]	

	Exceed	Exceed XP	Exceed XP	Exceed XP 8656
	3518	8656	6056	with Exceed 0015
Aluminum hydroxide (4m²/gr)	180phr	180phr	180рhг	180phr

Aging (110°C, 10 d): higher change percentage chosen out of either tensile strength or elongation

Data from tests performed by or on-behalf of ExxonMobil

Test item	Test method
Tensile strength	GB/T 1040.3-2006
Elongation	GB/T 1040.3-2006
Heat shock resistance	GB/T 32129-2015
Limited oxygen index	ExxonMobil test method (MEZ 122) based on ASTM D2863 A
Melt flow index	ExxonMobil test method

Key grade	MI (g/10min)	Density (g/cm³)	VA%
Exceed 3518	3.5	0.918	-
Exceed 0015	15	0.918	-
Exceed 2012	2.0	0.912	-
Enable™ 2010	1.0	0.920	-
Exceed XP 8784	0.80	0.914	-
Exceed XP 8656	0.50	0.916	-
Exceed XP 6056	0.50	0.916	-
Escorene™ UL00328	3.0	-	27.0

©2020 ExonMobil, the ExonMobil (the ExonMobil (top), the interlocking "N" device and other product or service names used herein are trademarks of ExonMobil, unless indicated otherwise. This document may not be distributed, displayed, copied or altered without ExonMobils prior written authorization. To the extent ExonMobil authorizes distributing, displaying and/or copying of this document, the user may do so only if the document is unaltered and complete, including all of its headers, footers, disclaimers and other information. You may not copy this document to or reproduce it in whole or in part on a website. Exon may be produced to the produce of the product of the produ

Contact us for more information: www.exxonmobilchemical.com/pe

